Τα deepfake βίντεο προέρχονται από τη λέξη «deep = βαθιά» από τη «βαθιά μάθηση» και «fake = ψεύτικο»». Η βαθιά μάθηση είναι μια προηγμένη μέθοδος Τεχνητής Νοημοσύνης (AI) που χρησιμοποιεί πολλαπλά επίπεδα αλγορίθμων μηχανικής εκμάθησης για την εξαγωγή δυνατοτήτων προοδευτικά υψηλότερου επιπέδου από μη δομημένα δεδομένα – όπως το ανθρώπινο πρόσωπο.

Για παράδειγμα, ένα AI μπορεί να συλλέξει δεδομένα σχετικά με τις φυσικές σας κινήσεις. Αυτά τα δεδομένα μπορούν στη συνέχεια να υποβληθούν σε επεξεργασία προκειμένου να δημιουργηθεί ένα βίντεο deepfake μέσω ενός GAN (Generative Adversarial Network). Αυτό είναι ένα άλλο είδος εξειδικευμένου συστήματος μηχανικής μάθησης. Δύο νευρωνικά δίκτυα χρησιμοποιούνται για να ανταγωνίζονται μεταξύ τους για την εκμάθηση των χαρακτηριστικών ενός σετ εκπαίδευσης (για παράδειγμα, φωτογραφίες προσώπων) και στη συνέχεια για τη δημιουργία νέων δεδομένων με τα ίδια χαρακτηριστικά (νέες «φωτογραφίες»).

ΔΙΑΦΗΜΙΣΤΙΚΟΣ ΧΩΡΟΣ

«Επειδή ένα τέτοιο δίκτυο συνεχίζει να δοκιμάζει τις εικόνες που δημιουργεί σε αντιπαραβολή με το σετ εκπαίδευσης, οι ψεύτικες εικόνες γίνονται όλο και πιο πειστικές. Αυτό καθιστά το deepfake μια πιο ισχυρή απειλή», προειδοποιεί ο Βασίλης Βλάχος, Channel Manager της Kaspersky για Ελλάδα και Κύπρο. «Επιπλέον, τα GAN μπορούν να παραποιήσουν κι άλλα δεδομένα εκτός από φωτογραφίες και βίντεο. Στην πραγματικότητα, οι ίδιες τεχνικές μηχανικής εκμάθησης και σύνθεσης deepfake μπορούν να χρησιμοποιηθούν για την παραποίηση φωνών. Είναι εύκολο να καταλάβουμε πώς οι ψηφιακοί εγκληματίες μπορούν να το χρησιμοποιήσουν προς όφελός τους».

Πώς μπορούμε να προστατευθούμε από τα Deepfake;

Η νομοθεσία έχει ήδη αρχίσει να αντιμετωπίζει τις απειλές των βίντεο deepfake. Για παράδειγμα, στην πολιτεία της Καλιφόρνια, έχουν ψηφιστεί δύο νομοσχέδια που καθιστούν παράνομες πτυχές του Deepfake – το AB-602 απαγόρευσε τη χρήση σύνθεσης ανθρώπινης εικόνας για πορνογραφία χωρίς τη συγκατάθεση των ανθρώπων που απεικονίζονται και το AB-730 απαγόρευσε τη εκμετάλλευση εικόνων πολιτικών υποψηφίων εντός 60 ημερών από τις εκλογές.

ΔΙΑΦΗΜΙΣΤΙΚΟΣ ΧΩΡΟΣ

Οι εταιρείες ψηφιακής ασφάλειας έρχονται συνεχώς με περισσότερους και καλύτερους αλγόριθμους ανίχνευσης. Αυτοί αναλύουν την εικόνα του βίντεο και εντοπίζουν τις μικροσκοπικές παραμορφώσεις που δημιουργούνται στη διαδικασία «πλαστογράφησης». Για παράδειγμα, οι τρέχοντες συνθέτες deepfake διαμορφώνουν ένα δισδιάστατο πρόσωπο και, στη συνέχεια, το παραμορφώνουν ώστε να ταιριάζει με την τρισδιάστατη προοπτική του βίντεο. Κοιτάζοντας προς τα που δείχνει η μύτη είναι ένας βασικός τρόπος ανίχνευσης.

Τα βίντεο deepfake βρίσκονται ακόμη σε ένα στάδιο όπου μπορείτε να εντοπίσετε μόνοι σας τα σημάδια. Αναζητήστε τα ακόλουθα χαρακτηριστικά ενός βίντεο Deepfake, όπως η αδέξια κίνηση, οι αλλαγές στον φωτισμό από το ένα πλαίσιο στο άλλο, οι αλλαγές στον τόνο του δέρματος, το παράξενο ή καθόλου ανοιγόκλεισμα ματιών, τα χείλη που δεν συγχρονίζονται με την ομιλία ή άλλα ψηφιακά αντικείμενα στην εικόνα.
Ο Βασίλης Βλάχος επιμένει ότι οι καλές διαδικασίες ασφάλειας είναι η καλύτερη προστασία: «Οι καλές βασικές διαδικασίες ασφάλειας είναι εξαιρετικά αποτελεσματικές στην αντιμετώπιση του deepfake. Για παράδειγμα, η ενσωμάτωση αυτόματων ελέγχων σε οποιαδήποτε διαδικασία εκταμίευσης χρημάτων θα είχε σταματήσει πολλές απάτες deepfake και παρόμοιες. Όλοι πρέπει να εκπαιδευτούν και να ενημερωθούν καλά πώς να εντοπίσουν ένα deepfake, ενώ οι εταιρείες πρέπει να διασφαλίζουν ότι οι εργαζόμενοι γνωρίζουν πώς λειτουργεί το deepfaking και τις προκλήσεις που μπορεί να φέρει. Θα πρέπει επίσης να έχουν καλά βασικά πρωτόκολλα με βάση τον κανόνα «trust but verify». Η σκεπτικιστική στάση απέναντι στα ηχητικά μηνύματα και τα βίντεο δεν εγγυάται ότι οι εργαζόμενοι δεν θα εξαπατηθούν ποτέ, αλλά μπορεί να σας βοηθήσει να αποφύγετε πολλές παγίδες».

ΔΙΑΦΗΜΙΣΤΙΚΟΣ ΧΩΡΟΣ

Πόσο πειστικά έχουν γίνει τα deepfakes

Τα πρώιμα βίντεο deepfake φαίνονταν γελοία, αλλά η τεχνολογία έχει εξελιχθεί αρκετά ώστε τέτοια μέσα να γίνουν τρομακτικά πειστικά. Ένα από τα πιο αξιοσημείωτα παραδείγματα τρομακτικά πειστικού deepfake από το 2018 ήταν ο ψεύτικος Μπαράκ Ομπάμα που μιλούσε για τα deepfakes. Στα μέσα του 2019, είδαμε ένα σύντομο βίντεο του ψεύτικου Mark Zuckerberg να είναι αξιοπερίεργα ειλικρινής σχετικά με την τρέχουσα κατάσταση απορρήτου.

Για να καταλάβετε πόσο καλή έχει γίνει η τεχνολογία, απλώς παρακολουθήστε το παρακάτω βίντεο. Ο ιμπρεσιονιστής Jim Meskimen το δημιούργησε σε συνεργασία με τον καλλιτέχνη deepfake Sham00k. Ο πρώτος ήταν υπεύθυνος για τις φωνές και ο δεύτερος εφάρμοσε τα πρόσωπα περίπου 20 διασημοτήτων στο βίντεο χρησιμοποιώντας λογισμικό deepfake. Το αποτέλεσμα είναι πραγματικά συναρπαστικό.

Τον Οκτώβριο, έρευνα σε μια υπηρεσία bot που δημιουργεί ψεύτικα γυμνά ανέδειξε ότι η πιο επείγουσα επικίνδυνη τάση “deepfakes” στο Διαδίκτυο δεν είναι η παραπληροφόρηση – αλλά το εκδικητικό πορνό. Η εταιρεία παρακολούθησης Deepfake «Sensity», προηγουμένως γνωστή ως Deeptrace, αποκάλυψε ότι είχε ανακαλύψει μια τεράστια επιχείρηση διάδοσης γυμνών εικόνων γυναικών που δημιουργούνται από AI και, σε ορισμένες περιπτώσεις, ανηλίκων κοριτσιών. Η υπηρεσία λειτουργούσε κυρίως στην κρυπτογραφημένη εφαρμογή μηνυμάτων Telegram χρησιμοποιώντας ένα bot που λειτουργεί με AI. Οι χρήστες είχαν τη δυνατότητα να στέλνουν στο bot τη φωτογραφία μιας γυναίκας που ήθελαν να δουν γυμνή. Στη συνέχεια, το bot δημιουργούσε ένα ψεύτικο γυμνό σώμα στο οποίο ενσωμάτωνε την αρχική εικόνα της εν λόγω γυναίκας.
Η Sensity ανέφερε πέρυσι ότι το 96% των βίντεο deepfake online ήταν μη συναινετική πορνογραφία. Ο Διευθύνων Σύμβουλος της Sensity, Giorgio Patrini, ανέφερε στο Business Insider ότι το ποσοστό δεν έχει αλλάξει.

 

σχόλια αναγνωστών
oδηγός χρήσης